Saturday, February 16, 2019

It Shouldn't Have Flown






By Steven W. Freimuth, former Captain, USAF

PROLOGUE


The following is my recollection of the events that occurred during a takeoff and flight on a September day in 1973 while flying out of U-Tapao Royal Thai Navy Airfield (UT) in Thailand.  This was after the war was over.  But we were still flying missions to maintain the peace.  While these events happened forty-four years ago, most of them were so etched in my mind, that I can still recall them as if it were yesterday. 

I am finally following up on my years of “intentions” and reducing this to paper as a result attending two Arc Light / Young Tiger reunions. It was there I met Tommy Towery and acquired the many “We Were Crew Dogs” books which he edited.  He wondered why a KC-135 pilot would be interested in reading these short stories mostly about B-52 crew experiences.  Well, I learned a lot more of the bigger picture in SEA (Southeast Asia) and stateside.  Often we were so busy  in our own activities, and in accordance with SAC’s (Strategic Air Command) “need to know” policies, that we (I) didn’t know much about the details of the roles of my fellow airmen.  And our shared suffering.  But more of that in another article.

I have chosen to use “full width” paragraphs to write the sequence of events as they occurred and what my thoughts were at that moment.  I have included “indented sections” to further explain various aircraft and performance details.  This is to assist the reader who isn’t as familiar with them to gain a better understanding of both what I was going through my mind and happening to the aircraft.  Thus, read just the expanded text to get a blow by blow description.


The Aircraft:  I was going to write about the KC-135A aircraft so the reader would have a better understanding of some of its quirks and limitations.  However, I came across the following written by Robert Graves who flew them in the 1980’s.  His description included everything I wanted to say and written better.  He wrote:

The First All Jet Tanker

The KC-135 Stratotanker, produced between the years of 1956 and 1965, was a derivative of Boeing's test bed aircraft, the 367-80. From this early test aircraft, both the KC-135 and 707 were derived which is why the KC-135 has a strong resemblance to the 707, though the tanker was smaller and lighter. Still, the tanker could carry 135,000 lbs of fuel and weighed in at just under 300,000 lbs fully loaded.

Part of the impetus for the Air Force to acquire this aircraft was the cold war. The nuclear arms race was in full swing in the late '50s and the Air Force wanted to have a tanker which could refuel its new intercontinental bomber, the B-52, to allow it to reach Russia. The old KC-97, a derivative of the WWII era B-29, just wasn't up to the task.

In fact, because the angst of quickly fielding a nuclear deterrent was so high during that time, several compromises and shortcuts were made in the design of the KC-135 to get it operational faster. These were compromises which I came to despise acutely nearly thirty years later.

The first compromise was the engines. Engine manufacturer Pratt and Whitney was working on a new engine design at the time known as the bypass fan engine. This new engine was to become the basis for all modern engines and was eventually used on the 707, but it just wasn't going to be ready in time for the tanker. So the KC-135 was outfitted with older engines which incorporated a technology known as water injection to produce enough thrust. Yes, you heard that right...they pumped water into the engine.

Without getting too detailed, high pressure pumps injected water into the engines during takeoff which increased thrust by means of an increased mass flow rate. Still, the airplane was grossly underpowered. While the airplane did usually get airborne, it would take most of the runway to do so when heavy. I have seen the departure end of the runway coming under the nose during rotation more times than I care to remember.
To give you an idea of how puny the engines were, the CFM-56 engines fitted on a 737 today produce about 34,000 lbs of thrust while the tanker's original P&W J-57s produced a mere 12,000 lbs. Due to its underpowered nature, the aircraft gathered unflattering monikers such as "The Silver Sow" or "The Steam Jet". My personal favorite was "Strato-Bladder" for the bladder type fuel cells in the body tanks. 

The KC-135A was eventually re-engined in the 1980s with those same CFM engines and was redesignated the KC-135R. The new "R" models are quite sporty now and even hold some time to climb records for transport category aircraft.

This first compromise of using water injected engines led to the compromise which I came to hate the most. To feed the water injection system, a water tank was needed. Since most of the body of the aircraft where cargo bins are on a normal plane were taken up with fuel tanks, a decision was made to remove one of the two air conditioning units, or packs. This meant that the airplane was hot, and I don't mean hot as in cool, but rather hot as in fetid.

I was stationed in Okinawa, remember, which is in a subtropical climate zone. This means warm and damp winters followed by hot and damp summers. The lack of A/C on the aircraft was most pronounced when flying hour after hour of "transition" training, or touch and go practice. It wasn't uncommon to get off the airplane soaking wet. Boeing didn't even have the courtesy to install an air vent to blow on the pilots' faces. The air outlets were under the seat where what little cool air that did emanate did no one any good at all.

Old Technology

As I flew the airplane in the early 80s, it had undergone a number of technology updates to its original systems but many vestiges of older technology were still on board. We still had a navigator assigned to the crew, but he had at his disposal an inertial navigation system, or INS which made his job more or less obsolete. Airliners were crossing oceans then with similar systems which had their accuracy measured in yards while GPS was still on the design table.

The aircraft also had, however, a sextant and an overhead port with which to view the stars. Celestial navigation dates back to the time of Magellan and was the reason the navigators were still on board. Remember, this aircraft was designed to fight a nuclear war and at the time it was thought that a nuclear detonation might render all electronics useless. Therefore, the navigator was trained to use the ancient technology of celestial navigation with a sextant to determine our course while flying to nuclear armageddon. My one regret is never having had our nav teach me how to shoot the stars with the sextant.

Over-water communications were also rather dated. While we had a high frequency or HF radio which could bounce signals long distances, ours was an old tube-type radio requiring a warmup and without a squelch control. This meant maintaining a "listening watch" on air traffic control frequencies which were always full of static, whistles and pops. Of course this was a copilot duty. When the air traffic frequencies became too unusable, I might have inadvertently tuned the radio to an awesome rock station beamed out of Saipan.

The standard for overseas communications is through the use of satellites today.

Flying the Beast

As I mentioned above, the airplane was underpowered. This meant that it had to be flown very smoothly and deliberately when it was heavy, which was most of the time. There were restrictions on the angle of bank that one could use after takeoff for instance, and multiple warnings concerning what to do or not do should an engine fail on takeoff.
There were so many red warnings on the engine failure pages that I think most of us flying the beast were convinced that an engine failure was pretty much game over. Thankfully I never got the opportunity to test out that proposition. …”

 Another former crew member has described the takeoff in the following manner: “I realize that this was a long time ago but when I was stationed at Robins AFB back in the mid-1960s our KC-135A s would use between 11000 and 12000 on T/O.  It was closer to the latter on hot days.  Sometimes they would return after their missions and still have some pine needles in the intakes from the tops of trees at the end of the runway. Of course these were fully loaded airplanes.  If anyone here ever witnessed a fully loaded “water wagon” they were truly something to behold.”

 And, as an additional piece of information for the B-52 crew members reading this, I have gleaned, your maximum takeoff weight was about 488,000 lbs.  From what I have read in “We Were Crew Dogs” the maximum weight at UT was about 454,000 lbs. (with twice the engines and water).  Half of that weight would be 227,000 lbs.  My takeoff weight in the follow story was about 262,000 lbs. The base weight of a 135 was between 105,000 and 107,000.

 As a final comment before I start my tale, there was a saying in SAC: “If someone could construct a runway that would actually encircle the entire earth, SAC would could come up with a mission plan that would use every inch of it”.

AND MY STORY BEGINS


This was to be our second flight of the day.  We were assigned to fly a KC-135A, tail number 59-1475, using a water takeoff with a max fuel load of 156,000 pounds on runway 18. 

THE RUNWAY:  Runway 18 is a 11,500-foot runway that ends with the overrun (or approach portion (when landing to the north on 36) followed by a sandy beach and the Gulf of Thailand.  Normal departure after takeoff is to the north.

WATER TAKEOFF AND JET ENGINES:  The KC-135A aircraft had four J-57 jet engines.  These engines were not turbofan jets In order to provide more thrust for takeoff, a 670 gallon tank of water was installed in the belly of the plane.  Electrically driven pumps furnished approximately 80 gallons per minute to each engine.  Accordingly, we normally had about two minutes of water before run out.  This increased the mass flow through the engines providing substantially more thrust.  Each engine (dry) should be able to provide a maximum of about 12,845 lbs. of thrust within a temperature range of -65 to 5 degrees.  The dry thrust would diminish substantially as the temperature rose above 5 degrees.  Water (wet takeoff) should be able to provide a maximum of about 12,925 lbs. within the 20 to 100 degree range.  

GENERATOR LOADS:  Three of the engines had generators to provide electricity while no. 4 had a cartridge start system in its place.  All the normal aircraft electrical loads could be met from the output of only one generator.  According to the charts, it would use about 94% of the rated capacity of a one generator during the highest usage period of a mission - except a wet takeoff.  The water injection pumps, that were needed for the critical two minute period, consumed about 100% of the capacity of a generator.  Thus, during a wet takeoff, about 1.75 of the available output of two generators was consumed.  Safety and redundancy had been built it.

MAX FUEL LOAD:  According to the charts, the maximum fuel load (capacity) is 202,800 lbs. for aircraft with an upper deck aft fuel tank installed.  However, I recall that at UT, the max load was 156,000.  This lower load was the maximum that we could get airborne given the runway length and warm temperatures.

The Form 781 maintenance log indicated that this was the first flight for this aircraft after going through “corrosion control”.  I didn’t know what that was and believe the crew chief said something about “taking the aircraft apart, looking for corrosion, and then putting it back together”.  I thought about a FSAGA (first sortie after ground alert).

I also need to insert at some point that at a safety briefing, probably within the prior week or so, there was a 135 out of Grand Forks or Minot that kept popping circuit breakers during a flight.  The crew continued resetting them several times and they continued to trip.  The crew found an electrical fire.
The preflight proceeded normally until we got to the Control and Trim Check.  With the control wheel rotated to the left, Ground reported “Left ailerons up, tabs down, left spoilers 40 degrees, right spoilers down, right ailerons down, tabs up”.  (A correct call and indications.)  When I then rotated the yoke to the right I got something like “Left ailerons down, tabs up, left spoilers up, right spoilers 40 degrees, right ailerons up, tabs down”.  Something in the all so familiar call given in a standard cadence seemed wrong.  “Aah Ground, would you repeat that call.”  It was repeated the same and Ground, this time, seemed to realize that something was wrong.  After a short conversation, I believe Ground said something like “Sir, we must have a stuck actuator, let me get a ladder and a hammer to fix it.”

As we waited on maintenance, I believe at some point we may have decided to continue to complete a few of the items left in the Interior Inspection checklist that we could do without Ground i.e. altimeters check, etc.  And we waited on the ramp in the afternoon sun (usually between 84 and 88 degrees).  Think of sitting in an auto in this position with two windows open while wearing a Nomex (a non-breathing plastic bag that provided fire protection) flight suit.  Because of this, we delayed putting on the SAC required inflatable life jackets that was were to be worn on all over water takeoffs.

Maintenance must have had problems finding the appropriate SAC specified hammer as start engine time (30 minutes before scheduled takeoff time?) came and went.  I believe it was between ten and fifteen minutes before takeoff time that maintenance finished “fixing” the problem.
At this point I should point out to those unfamiliar with this fact that takeoff times are important in SAC, almost sacred.  My recollection is that the scheduled time plus up to five minutes was okay.   I never knew if it went all the way up to those under CINCSAC but at least I had been told that everyone at UT got a black mark after their name when there was a late takeoff.  And, as was the custom, one “awe sh*t” wipes out 10,000 at-a-boys.

As a SAC trained professional - and a person whose Mother taught him to “do the right thing”- my crew and I finished the Interior Inspection checklist, and began the Starting Engines and Before Taxiing checklist, and Before Takeoff checklist in record time.  While switches were being thrown and settings made, clearance was requested for taxiing. 

I started to taxi as soon as clearance was given.  My co-pilot started the Before Takeoff checklist while we were taxiing.  We continued to run the checklists, throw switches, verify systems, and adjust settings.  Now there is a saying in SAC that there is only one thing worse than having a taxiing accident, that is living through it.  While well aware of that, I must admit that I made a “high speed” taxi.  In fact, a very high-speed taxi.  I think it was about four times faster than I had ever taxied before or since for scheduled flights.  Probably twice as fast as an alert taxi exercise.  I thought we might skid around the corners as we headed to the runway.  But I was going to make an on-time take off if at all possible.

As we approached the hammer head we called and received takeoff clearance.  No stopping before taking the active.  As we turned to the runway heading of 18, I brought the throttles back and my Co started the water injection.  I believe my Nav called that we crossed the threshold between four and five minutes after our scheduled takeoff time.  My crew had saved the day!

As I advance the throttles, water kicked in and we were off.  Air speed slowly increased as we rumbled down the runway.  S1 was called as our takeoff continued.

S1 is a calculated speed (V1 to the rest of the world) where if you encounter a major problem prior to reaching, you can abort and stop within the remaining runway length.

Then, just at the start of rotation, the aircraft became very quiet.  At least very quiet for a KC-135A making a water takeoff. 

Water takeoff’s noise was about 126 decibels.  

“The KC-135R is a dramatically quiet aircraft in comparison to the KC-135A, which is one of the worst noise offenders in the USAF inventory. … The noise footprint has been reduced from the "A" model by 95%”

Within a fraction of second later, the boom was out of his seat and standing between the pilot’s and co-pilot’s seats with his hands on each of our head rests.  “Generators!”  I looked up and saw all three had tripped off line.  Later, I found the Nav had attempted to make a similar call but he had crushed his mic switch attached to his flight suit with an alligator clip.

It is a crew duty for the Nav and Boom to monitor the generators on takeoff as the panel is overhead between the pilots.

At this moment in my life, everything slowed and every sense was at its keenest.

My first thought was that there was no way this aircraft would fly.  I thought the loss of water was about the same as losing one and a half engines while making a heavy weight takeoff.  Next, did we have a fire on board that caused the loss of electrical?  At that moment, I caught a glimpse of my Mae West life jacket on the floor next to the center control column out of the corner of my eye.  In the rush to complete the checklists following the maintenance delay, I hadn’t put mine on for the very first time.  I will accept that glimpse as Divine intervention.  Here I was about to crash a 263,000 pound aircraft into the Gulf of Thailand and I didn’t have my life jacket on.  We’re going to fly!!
How to do that? Throttles, I reached over and firewalled them. 

Normal takeoff procedures required the pilot to keep his left hand on the nose gear steering wheel (until about 90 KIAS), advance the throttles with his right hand to about takeoff EPR (engine pressure ratio) and then return his right hand to the yoke.  The co-pilot would follow the advance of the throttles with his left hand and fine tune them to about 2.85 EPR.  Takeoff thrust was determined by the EPR setting.  This was normally reached with a 94-98% RPM.  According to the Dash 1, the overspeed limit of 102% RPM should not be exceeded at any time.  If an engine overspeeds between 102-104% consideration should be given to operating on reduced power and shutting down the engine as soon as safety of crew and airplane permits.  If an overspeed exceeding 104% occurs, the danger of complete engine failure is more imminent.   The normal runway distance from the start of rotation to unstick is about 1,000 feet.

I then tapped my Co’s hand that was on the throttles. No electrical, no intercom!  He knew to check the RPM and pull them back if we were over 102%.  We were mushing through the air, over the overrun, sandy beach and then the water.  To this day, I believe it was the ground effect that kept us in the air.

Next, gear!  Normally the flying pilot calls over the intercom for the other pilot to raise the gear.  No intercom.  I immediately reached for the gear handle.  It wouldn’t come up!  We must have a hanging truck.  If I raise the gear using emergency override procedures, the gear will come up.  I will most likely lose all hydraulics as the gear will rip out all the hydraulic lines that are routed through the wheel wells for maintenance purposes.  The gear will be jammed in the wheel wells and may not come down. I can worry about landing later, I need to fly now.  I pulled the emergency override trigger.  The handle and the gear went up.  No loud crunching sounds.

The KC-135 has two main landing gear and a nose gear.  Each main gear has four tires, two forward and two aft.  These four tires are mounted in an assembly called a truck.  Each truck has actuators that level each truck after becoming airborne.  If a truck is not level, it is referred to as a hanging truck.  Raising the gear with a hanging truck using the 3,025 psi hydraulic pressure will cause the gear to be retracted.  Wheel well damage may result from emergency retraction if the main gear trucks are not level, the oleos are not sufficiently extended, or the nose gear is not centered.

According to a chart I just reviewed, the takeoff four engine maximum climb rate at sea level was 1,290 fpm and the three engine rate was 580 fpm.  The emergency procedures section of the Dash 1 states that gear drag lowers the rate of climb approximately 300 fpm at takeoff with flaps down.  An engine failure decreases the rate of climb approximately an additional 900 fpm.  The opening of the gear doors reduces the rate of climb even more while the gear is being raised.  According to this, 300 fpm plus 900 fpm equals 1,200 fpm reduction without considering the door effect.  A chart amount of 90 fpm does not provide a lot of flight cushion. Paper calculations have never provided an iota of actual lift or thrust.  And we had lost water, even worse in my mind than an engine.

The later modifications to the KC-135R designation provided a maximum climb rate of 5,000 fpm even after considering the allowable increase in aircraft and fuel weights.

While doing these procedures, I was looking out my window.  (No flight director system – no electrical power.)  I saw a Thai fishing boat.  It was a small boat with a tiny cabin leading below deck.  As we were about to fly over it, I saw the captain coming up from below deck with a white bucket full of something. He looked into my eyes and I saw the whites of his.  (Maybe you B-52 types are used to this low-level flying, this was a first for me.)  His bucket went up as he dove back down below deck.

Flaps! With the gear up we were beginning to gain airspeed. I reached over and raised the flaps.  On one of the two gauges that monitored the inboard and out board flap position (one gauge and for the inboards, a second gauge for the out boards), both needles went from about the three o’clock position to the twelve o’clock position.  On the other gauge, one needle went to twelve, the other to nine o’clock.  Asymmetrical flaps! Brace for the rolling motion!  No roll detected, bad gauge?

Asymmetrical flaps is a condition where the flaps do not retract or extend at the same rate.  This difference has the same effect as imputing a “turn” using the ailerons via the yoke.  This is extremely dangerous when at very low altitudes.  A bank angle of 30 degrees at climbout speed with flaps down could reduce climb capability by as much as 400 fpm.  As speed decreases, the effect becomes more severe, particularly in the clean configuration.

Assess your flight condition.  Gear up, flaps up, somewhere between 1,000 and 2,000 feet AGL and accelerating to over 200 KIAS.  Okay, now what. 

Declare an emergency.  Battery switch emergency.  Listen to the UHF radio “click” as it cycles and tries to lock on the preset frequency.  Not enough power in the battery to lock on a frequency.  Go to “guard” position on the radio.  Still not enough power to lock on.  Dead battery.

The UHF radios had preset frequencies for items like ground control, tower, command post, etc.  To change from one preset to another you would rotate a dial with numbers, similar to an old-fashioned TV dial.  Guard was an emergency frequency that could be both monitored and transmitted on.

Holler [Shout] at the Co to try and get some generators on line.  He successfully gets number 1 and 2 on line and mated to the bus.  Number 3 is toast.  This provides power to all the equipment. Get a TACAN DME (distance measuring equipment) lock at about 12 miles.  That’s is a long way to swim! (Even for a Minnesotan used to 10,000 lakes).  “This is _____ declaring an emergency in a left turn to 360 at 2,000 feet”.

So here we are rolling out on a 360 heading and describing to the Command Post the nature of our emergency.  About this point I told the Boom and Nav to go back in the plane and see if we had a fire, etc.  They reported no issues.  When we got back even with the base and are down wind, the Command Post asks me what is our current condition.  “Gear up, flaps up, two generators on line”.  “Roger”, is the response, “that is a go condition”.  I didn’t tell them my legs were shaking on the rudder pedals.  I don’t think that would have changed their opinion.  I was thinking “land, go to bar”.
We are now north of the base climbing through 8,000.  My number two engine oil pressure gauge starts to fluctuate and soon goes to zero.

Because more engines in the 135 were apparently shut down because of faulty oil gauges than actual loss of oil pressure, the fleet was in the process of being modified with a second low pressure sensor and indicator, a red warning light.  This aircraft had been modified.


And the number two oil light was illuminated.  Time to shut down number two engine.  Must have blown an engine seal after going to increase thrust.

“Command Post, this is _____, declaring an emergency.”  A short pause.  “Roger ____, didn’t you just terminate your emergency?”  “That’s a roger but now we are declaring a new one.”  And in addition to shutting down the engine, it caused us to lose a good generator.  We were down to one generator.  We are given clearance to dump fuel and return to land.

But, as I earlier mentioned, my Mother taught me to do the right thing.  Two things would have been wrong if we just hit the dump switch.  First, the JP-4 fuel we would dump, about 60,000 pounds (or about 9,230 gallons) to get down to maximum landing weight for braking limit purposes, would not evaporate prior to returning to earth.  There would be a whole lot of rice paddies covered with a film (or more) of JP-4.  Second, if we dump fuel with the boom up and in trail, fuel gets into the tail assembly and it needs to be cleaned somehow. 

So I requested clearance to 21,000 feet.  After being granted, we start the slow, wallowing struggle to climb to that altitude.  It takes quite a while to get there but we finally make it.  “Boom, go back and lower the boom so we can dump”.  I soon get a call back over the intercom. “Pilot, I am having control problems with the boom.  One of the ruddervators isn’t working.  We may have to land with the boom in trail”. 

About this point in the flight, I am beginning to have doubts as to the air worthiness of this plane.  And more specifically, what’s next.  Systems just don’t seem to be functioning as designed.  But we successfully dump the fuel and the Boom is able to get it up and locked.

We now begin our decent.  We lower the gear handle and the gear comes down.  Again, I send the Nav and Boom back to check the visual down and locked stripes that can be seen from inside the cargo area.  I speculated that the gear wouldn’t come up, not because of a hanging truck, but rather to the fact that we must have lost electrical power while we still had the “weight on wheels” (WOW) safety interlock switch in the “on ground” position.  That prevents the gear handle from being raised using normal procedures.

Next, the flaps are lowered.  They extend without an issue. It was a faulty gauge.  This is followed by a successful three engine landing.

Because of the previous events, we are were met by the squadron or wing commander after taxiing in and shutting down.  He was kind enough to present our crew with a six pack of beer for doing a good job.  (Or for saving his promotion?)

We then had to endure a longer than usual maintenance debriefing.  I can’t recall if any of the above qualified for a “red X” in the 781.  But we did make a few entries. Someone brought to our attention that maintenance was aware of a circuit board defect that could cause a generator to trip offline. If this board experienced a vibration equivalent to that of slamming a fist on a table, it could trip a generator.  Because of the location of this board, they were replacing them only when an engine was required to be replaced.  I believe all further recollections of comments made would be censored.

EPILOGUE


For the next week or so, every evening after a flight we would be in our trailer and my co-pilot would go into the performance charts and say “it shouldn’t have flown!”. 

This was very unsettling to my five-month pregnant wife, Melanie, who I had brought over for about six weeks.  She was staying at the Swan Lake Hotel but came to our trailer during the day time.  She found more to do on base as she waited for us to return from flights.  Since the war was over, I wanted to share with her some adventures in Thailand that I had on my prior two TDY’s.  This was NOT one of them I planned on sharing with her.  She did gain a greater appreciation for the risks any airman encounters when they “slip the surly bonds”.

My Co did buy me a nice lobster dinner at Camp Samae San (the Thai Marine Corps Base with US Army units adjacent to UT) with a deep-water port.  I believe the fuel and weapons for the UT aircraft came through this unit.  It was my first and only trip to their O Club, but what a club!  Real linen table cloths and napkins, real (non-plastic) silverware including salad and desert forks, real glass glasses, candle lamps on the tables, waiters, etc.  It was as good or better than any restaurant in Bangkok.  And twelve lobster tails.  Okay, they were one ounce each but tasted wonderful.  And all paid for by my co-pilot because -  even though I didn’t follow SAC policy for over water takeoffs; and whether through luck, skill or Divine intervention - I was at the controls and now we were able to eat the lobsters rather than them eating us.

Shortly after my return to Ellsworth, I put in my paperwork for a January separation.  The war was over, I heard rumors of a RIF (reduction in force), and recalled the two to three weeks of pulling Alert (with the possibility of only one to a max of three flights) a month that seem to happen whenever I was back stateside.  I don’t believe I was notified of the following that appeared in the December 1973 issue of SAC Combat Crew magazine until it was sent to me by my former squadron commander several months after my separation.







“YOU NEVER LIVED, UNTIL YOU ALMOST DIED.  FOR THOSE WHO FIGHT FOR IT, LIFE HAS A FLAVOR THE PROTECTED WILL NEVER KNOW.”  Vietnam 1959-1975

Thursday, January 31, 2019

What Do You Want from an Airline Career as a Pilot?






I'm getting to the end of my airline career. Oh, I'm not quite there yet, but I am close to the final turn and the PAPIs will soon be in sight. The FAA mandated retirement age is currently 65, and I'll be turning 60 next year. The retirement age was adjusted from 60 to 65 in 2007 and there are rumors that as the pilot shortage worsens, industry lobbyists will push to have the age adjusted to something like 67. Either way, I don't see myself schlepping my rollaboard through the southside 'hood to the crash pad into my dotage. 65 will be it for me assuming I pass a medical until then.

People often ask why I don't retire now. These are usually pilots junior to me, but it's a fair question. The reason I give is that the airline is a great part-time job. I generally fly only three days a week and rarely pick up flying. And if I wasn't flying, I'd probably just find a local cigar bar or doctor's waiting room to spend time chatting up other retirees on how good the old days were or how the darn kids are screwing everything up.

So with (much) more of my flying career behind rather than in front of me, I am able to look back and assess how things have turned out, and perhaps to give some perspective or advice to those who might be just starting out.

Without a doubt, I have had a blessed and charmed flying career. Starting in 1982 as a second lieutenant in the Air Force, and having never touched an airplane, I've spent every year since then at the controls of a jet aircraft. Hired by my airline at age 30, I found myself in the left seat of a 737 four years to the month of being hired. I now find myself close to the top ten in the seniority list in my domicile. With about 600 captains below me, this means I usually get the schedule I want assuming the company publishes it and Charlie C. doesn't take the line I want. C'mon Charlie, retire already!

There are some things, though, that I won't get to do. I won't ever be a widebody captain because my airline doesn't fly them. That means that I won't get to enjoy the over-water widebody lifestyle of 30 hour layovers touring in some exotic foreign locale or on a white sand beach. I also won't get the downside of back side of the clock flying nor the several day recovery period adjusting back to local time. (I did spend over a decade flying jumbos for Uncle Sam so I have that t-shirt.) Tradeoff? That depends on what you're looking for.

Which is the Best Airline to Work For?


This question gets asked quite often, and I've always maintained that the best airline is the one that hires you. But beyond that pithy answer, the best airline will be the one that gives you the things you value the most; the things you want out of a flying career. That answer will necessarily be different for just about everyone.

Do you want to upgrade to captain quickly? At all? Is widebody flying on your list? Where will you make the most money? Does money matter, or is job security more important? If your spouse is a surgeon or other professional, maybe job security isn't as much of a concern. If you are the sole breadwinner, perhaps it's higher on the list. Where do you want to live? Does your chosen airline have a domicile there or are you willing to commute? Do you want to be home when your kids are awake? How about being able to bid vacation when they're on summer break?

All these are questions that you have to ask yourself, and many times you may not get a choice, but end up taking what is offered. If another offer comes along you'll then have a choice. Leaving an airline that hired you for another is a tough call, but it only gets tougher as you gain seniority. I've flown with profoundly unhappy pilots who wish that they'd jumped early on in their career but are not willing to give up the seniority they have to start again. This is a bit of the "sunk costs" fallacy, but you are only issued one life and have to make the most of it.

Keep Your Priorities in Order


I also flew with a young pilot some years ago who, at the end of our month together, announced that he was quitting to go to another carrier. He was a senior first officer looking at a captain class in a few months. He didn't dislike where he was, but rather was entranced by the thought of flying widebodies for another airline. In fact, he said that the toughest part about leaving was he really did like the people where he was.

That was in the spring of 2001. After 9/11 he was quickly furloughed by his new airline and probably spent years getting back into a cockpit. Was it worth it for him? We lost contact, so I don't know. Perhaps. Will there be another lost decade like the one that followed 9/11? Which airlines are best positioned to weather another storm like that?

A Perspective


I started looking for an airline job after leaving the active duty Air Force with just north of 2500 total hours, all of it in jet aircraft. I applied to all the major passenger and cargo airlines and a few of the minor ones. I got a job offer from only one, a minor regional airline, and the one with which I'm still employed nearly 30 years later.

Shortly after being hired in the early 90s, there was a mideast war and a bit of a recession. Most of the airlines with which I'd interviewed quickly started furloughing pilots, including many pilots I knew. Taking a job with a guard or reserve unit was considered furlough insurance so that's what I did as well. I never had to use that insurance policy, but knew many who did.

The quickest way to gain seniority is to find an airline with either lots of upcoming retirements, or lots of growth. My airline had virtually none of the former but lots of the latter. This allowed for a very fast four year upgrade to captain. It was, though, the last formal schoolhouse course I would take.

Even though my pay rate was not quite as good at times as some other major airlines, the time value of making that money for longer more than made up the gap. As a general rule, widebody first officer pay is roughly equivalent to narrow body captain pay, so when comparing airlines, look at your time to either widebody first officer or narrow body captain.

Consider also in your choice schedule flexibility and the ability to pick up flying. This varies greatly between airlines, but can significantly enhance your quality of life and pay. I don't pick up much flying, but we have some enterprising pilots who can routinely top 150 hours of monthly pay by working their schedules and taking advantage of premium pay rules.

The Lost Decade


It is difficult to convey the disaster in the commercial aviation community in the years following 9/11, unless, of course, you lived through it. Then you know all too well of the furloughs, bankruptcies, career stagnations and reversals that were emblematic of that dark time. It was also the time when mainline contract loopholes were exploited allowing an explosion of regional jet flying with pay so low that some pilots qualified for food stamp programs.

My airline was relatively unscathed by the carnage of that time, so while job security wasn't a huge concern, there were no significant raises coming either. A comparison with my wife's career is instructive here. She took a job with a major airline shortly after I got hired at my airline.

A Career Comparison


For a short while prior to 9/11, she outearned me in the right seat of a 75/767 by a significant amount. That didn't last. A few short years later, while she was in the right seat of a 747, I outearned not only her, but also the captains with which she was flying. Her line guarantee had also been slashed to the low 60s after the bankruptcy while my guarantee was at 85 hours, but my line flying was almost always above that number.

The tear in the fabric of universe has mostly healed since then, and our pay is roughly equivalent again with her holding down a senior 777 F/O seat. She'll lap me in pay once she takes a widebody left seat which is almost attainable for her, but it will be back to working weekends and holidays for awhile albeit for a lot more money. It will be her first left seat job after 25+ years of commercial flying.

Who won? That's a tough call. I'm jealous of her 30 hr HKG layovers and license with type ratings of all the Boeings save for the 717 and 787. We sure were thankful, though, to not have to worry about a furlough or bankruptcy after 9/11. I've also never flown a redeye from SFO to EWR for an eight hour layover, or any redeye for that matter. Twenty five years in the left seat of a Boeing has to count for something as well. Judging by the 401s (she lost her pension with the bankruptcy of her airline) the money will probably end up being close to equal.

In Conclusion


As I mentioned at the start of this essay, I've had a charmed aviation career. I'd like to say I was smart about it all, but plain dumb luck probably played a larger part than I'd like to admit. That said, if you're just starting out, take a few moments of serious reflection to decide what is most important to you, and then make your decision of how to structure your career. Good luck! I'm here for you.




Tuesday, December 04, 2018

The Lion Air Crash: What You Need to Know



PK-REN from Jakarta, Indonesia [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons
Lion Air B737 MAX 8 (Wikimedia Commons)



On October 29 of this year, Lion Air Flight 610 crashed into the Java Sea 11 minutes after departing Jakarta for Pangkal Pinang with the loss of all 189 souls on board. What first called special attention to this accident was that the mishap aircraft was a brand new MAX 8 version of the venerable Boeing 737, and had been delivered to the airline less than a year earlier.


Also of note has been the revelation in the wake of the ongoing accident investigation that a new safety system designed to prevent stalls had been installed on the aircraft, but had not been publicized nor documented in the flight manuals used by flight crews. The flight data recorder (FDR) from the mishap aircraft has been recovered and data from that recorder shows that an errant sensor on the aircraft may have provided bad data to this new system possibly implicating it in the accident. 

The investigation is ongoing and it is inappropriate to assign blame to any system or persons until the completion of the accident review, but as there is much misunderstanding concerning what information is already known, we can take a closer look at the circumstances surrounding this tragedy.

An Undocumented System


The new safety system installed on the MAX version of the 737 known as the Maneuvering Characteristics Augmentation System or MCAS, was designed to provide a nose-down trim input during manual flight as the aircraft approached a stall. What this means in simple terms is that if a pilot is flying the aircraft without the autopilot, and is for whatever reason flying the aircraft well below a safe speed, the aircraft will automatically run the stabilizer trim forward which will have the effect of making the controls heavier to hold.

In addition, once full power is eventually applied to recover from the stall, the forward trim assists the pilot in keeping the more powerful engines on the MAX from overpowering the recovery by exceeding elevator authority. The nose tends to want to rise during a stall recovery and forward trim lessens that effect.

Here is an excerpt from the multi-user message sent by Boeing on November 10 to all 737 MAX operators:

A pitch augmentation system function called 'Maneuvering Characteristics Augmentation System’ (MCAS) is implemented on the 737-8, -9 (MAX) to enhance pitch characteristics with flaps UP and at elevated angles of attack. The MCAS function commands nose down stabilizer to enhance pitch characteristics during steep turns with elevated load factors and during flaps up flight at airspeeds approaching stall. MCAS is activated without pilot input and only operates in manual, flaps up flight. The system is designed to allow the flight crew to use column trim switch or stabilizer aisle stand cutout switches to override MCAS input. The function is commanded by the Flight Control computer using Input data from sensors and other airplane systems.

It is also important to note that any pilot finding him or herself in this position has real problems and has already disregarded the "stick shaker" stall warning system which vibrates the control column well before reaching stall speed. The reason the system was installed on the newest MAX 8 versions of the 737 and not earlier models is apparently the discovery during flight testing of some unfavorable stall characteristics on the new aircraft that did not exist on earlier models.

Angle of Attack


Ok, so far so good. A new safety system was installed. Who can argue with a safety system? The problem that the Lion Air flight encountered, however, was some sort of malfunction in information coming from a sensor being fed to the new system. This sensor is known as the "angle of attack" or AOA sensor. The angle of attack of a wing is the angle between the chord line of a wing and the relative wind moving across that wing. A chord line is an imaginary line which runs from the leading edge to the trailing edge of a cross section of a wing. 

A wing which exceeds the critical angle of attack stalls, which is where boundary layer separation occurs and the wing stops producing lift. If you've ever stuck your hand out the window of a moving car and made a wing with it, you've experienced how changing the angle of attack changes lift. For more on AOA, see here.

The angle of attack sensor is essentially a very small wing on a hinge mounted on the fuselage which measures direction of the relative wind passing the aircraft. You can see them installed near the pitot tubes on most airliners and there are usually at least two installed for redundancy. AOA data is used by a number of systems on an airliner, but happened to be one of the primary inputs to the MCAS system on the MAX 8 aircraft. It is here where problems occurred.

Faulty Input Means Faulty Output (GIGO)


Analysis of the flight data recorder from the Lion Air flight revealed that the data from the two AOA sensors installed on the aircraft did not match. The left AOA sensor was recorded as giving erroneous information during the entire flight. An erroneous AOA information feed or some other malfunction is suspected to have caused the activation of the MCAS system resulting in the system trimming the aircraft in a nose down direction. During the entire flight the pilots trimmed in a nose up direction to keep the aircraft flyable, but at some point stopped trimming and allowed the MCAS system to trim the aircraft nose down to an unflyable condition.

The reason for this is unknown and may be determined when the cockpit voice recorder (CVR) is recovered. Also unknown is why the pilots never used the two stabilizer cutout switches located on the center stand just behind the throttles. These switches remove all electric power from the stabilizer trim motor and would thereby deactivate the MCAS trim inputs.

In fact, on the previous flight of the mishap aircraft, a failure of a similar nature also resulted in uncommanded nose down trim inputs and required the pilots of that flight to use the cutout switches to deactivate the electric trim system. The 737 has a large manual trim control wheel mounted on the center stand that can be turned to adjust the stabilizer trim. It is normally not touched but spins as the electric trim motor is engaged. The pilots on that previous flight used the manual trim wheel to adjust the trim to safely land.

The aircraft did have maintenance performed on various airspeed, AOA and other systems in the days leading up to the mishap flight in response to several defects being written up on previous flights. The exact nature of the malfunctions and degraded systems on the mishap aircraft has yet to be determined as the investigation proceeds, but an AOA sensor had been replaced in response to writeups on the previous flight. A closer look at the flight data from both the mishap flight and the previous flight can be found here.

Protecting Pilots From Themselves


There is an ongoing debate in the aviation community about the benefits and liabilities of cockpit automation. This debate has centered on the effect that highly automated cockpits have tended to make pilots rusty in their "stick and rudder" or basic flying skills. Make no mistake, automation has been a boon to both aviation economics and safety, but it is now being realized that it is not an unmitigated benefit.

At question is the design philosophy incorporated into automation. Years ago, the two main commercial airframe manufacturers, Boeing and Airbus, diverged in their approach to flight control automation. While Boeing aircraft have always incorporated the ability to disconnect all automation, Airbus on the other hand was a pioneer in designing "fly by wire" flight controls into their aircraft. This meant that pilot inputs were sent to a computer and the computer controlled the aircraft. There was no ability to completely bypass the computer and control the aircraft directly.

The revelation that a safety system designed to prevent an inattentive pilot from stalling the aircraft was surreptitiously installed will raise questions as to whether Boeing has decided to follow Airbus down the road of incorporating behind the scenes automation to prevent pilots from doing stupid things. Remember, the original anti-stall device was always the pilot. Warning systems could signal that the airplane was getting slow, but the pilot was always the backstop. Given that the MCAS system can be disabled by the trim cutout switches makes the above scenario less likely.

The alternate explanation to the installation of the MCAS system is that it is simply designed for the mitigation of unfavorable stall characteristics as mentioned above. This raises the question, though, of why the system would not be documented in the aircraft flight manual. Surely pilots would want to know of these unfavorable characteristics and also of the existence a system designed to compensate for those effects. Since the system was undocumented, the pilots of the mishap flight likely had no idea why their trim kept running forward nor were they expecting such behavior.

What's It Doing Now?


It is imperative, then, that pilots are well versed in not only the normal operation of their aircraft, but also in any possible failure mode and are ready and able to assume complete command at any time that the automation is not performing as expected.

Several high profile accidents such as Air France 447 and Asiana 214 serve to highlight the potential pitfalls of flying highly automated aircraft. Part of the problem confronting pilots of these aircraft is the danger of becoming confused about what the aircraft automation is doing. Known as "mode confusion", pilots can make the mistake of assuming that the automation will perform in a certain manner and become confused if it doesn't.

This was one of the findings in the accident review of Asiana 214 which crashed into the seawall at San Francisco. The pilots realized too late that the mode that had been selected would not do what they were expecting. They were then unable to prevent the aircraft from crashing short of the runway.

Now extrapolate mode confusion to a malfunctioning system which the pilots were unaware was even installed, and you can see the difficult situation they faced.

In Conclusion


The cause(s) for the crash of Lion Air 610 are currently unknown and will remain so until the investigation is complete. In the interim, new knowledge of the existence of an undocumented safety system installed on the 737 MAX should serve to further the debate on the appropriate role of cockpit automation.




Thursday, November 08, 2018

How Fast are We Really Going?


Airspeed is more than in interesting detail...it keeps you alive.
Airspeed is Life!





One of the most common questions we get asked by passengers is how fast we're going. Usually it is asked about takeoff or landing as it is easy to find out how fast we're going at cruise. For that, simply look at the inflight entertainment system which gives a readout from the onboard GPS system. When I give an answer to the takeoff or landing speed, I'll say it depends. On what you may ask? It depends on many factors, to include the weight of the aircraft, the wind, the airport elevation, the runway conditions (wet or dry) and even the terrain surrounding the airport.

Even after explaining all that, I have to give an approximate answer because our airspeed up front is given to us in knots and not the more familiar miles or kilometers per hour. A "knot" is a nautical measure of speed which means nautical miles per hour. A nautical mile is 6076 feet as opposed to a statute or "normal" mile which is 5280 feet. In ancient days, sailors would feed a rope over the side of their ship for a specified amount of time and then measure the number of knots (which had been tied into the rope at regular intervals) that had been pulled overboard. The number of knots pulled over was proportional to the speed of the ship.

Later on, a nautical mile was defined as one minute of arc along a meridian (north-south line) on a nautical chart. This made chart reading easier and was picked up by aviation as a standard navigation protocol since early overwater aviators would have to use the same charts as used for surface navigation.

That all sounds very interesting, but are we really using the GPS readout to determine our takeoff and landing speeds? No. We are not. Airplanes stay in the air by virtue of the wind moving over the wings. Not enough wind, the wing stalls and it drops like a rock. The question is how do we know how much wind is moving over the wing?

Wind Over the Wings


To determine how much wind is flowing over the wings we use an airspeed indicator which is simply a sensor connected by plastic tubing to those odd shaped pointy things you see attached to the fuselage near the front of any airliner. Those are called pitot tubes. The tip of a pitot tube has a small opening which is connected by tubing to a pressure sensor. A measure of the air pressure from the pitot tube when compared to the ambient pressure is proportional to the speed of the aircraft through the air.

Pitot tubes, in combination with static ports (which measure ambient pressure) and their related indicators, are collectively known as the pitot-static system, and constitute one of the most vital systems on any airplane. This is why you usually see so many pitot tubes on the front of airliners. They provide redundancy.

At this point you may be raising an objection: But isn't air a compressible fluid, and wouldn't this compressibility skew the results as, say, temperature changed or other conditions changed? Why yes, yes they would Poindexter. Move to the front row and give yourself a star.

ICE-T (Not a drink from Long Island)


Pilots of a certain age will remember the torture inflicted by their instructors by being required to perform the dreaded "ICE-T" problem using the E6B government issue "whizz wheel" circular slide rule. This usually occurred as they were struggling to realize their dream of being a jet pilot while attempting to not throw up in the flying sterno can known as the T-37 in the west Texas summer heat. ICE-T was not an exotic drink from Long Island, but rather an acronym which stood for Indicated Calibrated Equivalent True airspeed. These terms referred to an airspeed conversion from the indicated speed shown on your panel to your actual velocity through the air known as "true" airspeed.

Performing this calculation was a drawn out process using inputs such as your pressure altitude and  temperature deviation (from a standard day). It was necessary because your "true" airspeed was used in navigation calculations such as time-distance-fuel determinations.

Today, of course, those calculations are all automated by an onboard computer known as the air data inertial reference unit or ADIRU.  This system takes all the pitot static input data and combines it with attitude and position data from the inertial reference units (IRUs) to provide one stop shopping data supply to the pilots' displays, the autopilot, and even the engines which use the data to optimize things like fuel burn.

Do We Have Enough Gas?


Once you know your "true" airspeed or actual velocity through the air, you need to apply your known wind correction to determine your actual velocity across the ground. This is important, because if the headwind is, say, 30 knots stronger than what you planned for, you might not have enough fuel to reach your destination. This can ruin your day on a long overwater leg.

In years gone by, flight plans would be "winded" with the latest forecast from aviation meteorologists. The plan was only as good as the forecast, and fuel needed to be closely monitored to determine if actual headwinds were greater than forecast. INS (inertial navigation) and GPS systems have greatly increased the accuracy of fuel planning as they give real time wind readouts. You instantly know if your plan was accurate.

Wind correction data input, as you might imagine, is also automated on modern transport aircraft and fed into the aircraft's flight management system (FMS) through an automatic data upload.  This system will give you a helpful INSUFFICIENT FUEL warning if it thinks you're not going to make it. Usually this warning means that you fat-fingered your flight plan input and told the airplane that you're going back to your origination as your destination or some similar easily rectified mistake.

In Conclusion


Airspeed is important for reasons beyond satisfying the curiosity of aviation fans. In the immediate short term, it keeps airplanes aloft by informing pilots when they are getting slow, which is an unforgivable sin in aviation. In the long term, knowing ground speed, which is derived from airspeed plus wind inputs, lets pilots know that they will arrive at their destination with enough fuel.








Monday, April 09, 2018

Is the Airline Hub History?



Photo - Eric Salard CC BY-SA 2.0



A reader sent me this article from the Daily Beast (good God, man! What are you reading that for?) which foresees the denouement of the airline hub due to the arrival of a new class of commuter jets which can hop from destination to destination while skipping hubs.

Once those [smaller] jets reach the airlines they will have the same hub-killing effect in the rest of the world as here. Given the choice of flying a straight line from A to B instead of having to change airplanes on the way is a no-brainer in any language.

While the article gives a decent roundup of the recent history of the airline industry and the introduction of smaller yet longer range commuter jets, it should have been written about 15 years ago. The Canadair CRJ-200 first flew in 1991 and along with the Embraer ERJ series of regional aircraft came to dominate the regional airline market through the 2000s.

These smaller, faster jets held promise to both serve smaller markets from fortress hub airports, or to skip the hub entirely and fly point to point. Analysts thought they'd be handy in poaching passengers from a rival's hub as well. As it turned out, the hub killer commuter jet was anything but.

Primarily deployed by regional airlines which wet-leased their aircraft and crews to a major airline partner, commuter jets mostly enhanced hub operations by offering service to smaller "spoke" airports which couldn't support full narrow body service.

Airline hubs have always been inefficient in their use of crews and equipment, but very efficient in revenue generation using the ability to create many different city pairs. Point to point regional operations were never embraced by the major airlines which viewed those operations as subtracting value from sizable investments in their hubs.

The old Canadair and Embraer CRJ and ERJ jets are now being replaced by newer more comfortable "C" and "E" series jets but I don't see the economics changing much. In fact, an ongoing pilot shortage seems to be making some major airlines reconsider their relationships with their regional partners. Bringing their regional operations in-house means that they're more likely to retain the pilots they have brought onto their master seniority lists.

For instance, both United and Delta have recently purchased regional aircraft directly, though United may still have their regional aircraft flown by one of their regional partners.

However it shakes out, it doesn't appear, though, that the airline hub will be going anywhere soon.

Thursday, April 05, 2018

The Deadly Flaw Hiding in Self Driving Cars and Pilotless Airplanes (Hint: It's Humans)



Photo: Timtempleton  CC BY-SA 4.0



A common theme on this blog has been about the promise—and pitfalls, of automation in aviation. Pilotless airplanes have been trumpeted simultaneously as the final nail in the coffin of aviation accidents and as the solution to the ongoing worldwide pilot shortage.

Not to be outdone in the hyperbole of the future department, driverless cars are heralded as the end of everything from traffic jams and fatalities to the need to even own an automobile. Simply summon one on your smartphone and away you go to the opera or to work.

The reality of the future, while not thwarting all those dreams outright, may be riding the brakes a bit.

The fatal collision between a driverless Uber car and a pedestrian last month is calling into question the idea that driverless technology is ready for prime time. And the interesting part is that Uber, for their part, thought the same thing. Their driverless car wasn't really driverless, but had a driver hired for the purpose of sitting behind the wheel to take over if the machine made a mistake.

Well, the machine made a mistake when a woman crossed the road outside of a crosswalk and was hit and later died of her injuries. Tragic as that was, it is inevitable that these types of accidents are going to occur. Sensor technology, while good and getting better, still has a long way to go. If you find it difficult to drive in heavy rain or snow, machines have even more difficulty.

These problems will eventually be solved, but in the interim, it will be up to humans, whether in the car, or at a remote facility, to monitor the machines. In this case, the human monitor was not able to avert the crash. This, then, is the flaw in the system: humans make lousy monitors of machines, be it an autonomous car or an automation flown airliner.

A recent article in the WSJ highlighted the stressful nature of the job for which Uber's monitor/drivers were responsible:

“The computer is fallible, so it’s the human who is supposed to be perfect,” one former Uber test driver said. “It’s kind of the reverse of what you think about computers.”
 Also, as autonomous technology improves, the need for drivers to take action diminishes, making it harder to stay focused, test drivers said.

Humans, being human, become bored and distracted after a very short period of time. Well, then, you might say, we should employ other machines to watch the machines. This begs the question of what the monitor machine (or more likely software) should watch and why couldn't this functionality be incorporated into the primary control software.

This also gets to the nature of how machines think versus how humans think. Humans are better than machines at processing ambiguous information and confronting situations which are new to them. AI, or artificial intelligence, is how software engineers hope to emulate the human ability to make decisions when confronted with novel situations which haven't been pre-programmed.

This capability is getting better all the time, but has a way to go before humans can be completely written out of the equation. In the meantime, humans will need to be somewhere in the control loop. We should all hope that the human monitor isn't dozing when the sun gets in the eyes of the computer driven car while we're crossing the street.






Wednesday, April 04, 2018

Air Force Reserve Adds New Commitment for Pilots and Maintainers



U.S. Air Force photo/Tech. Sgt. Shane A. Cuomo


The Air Force Reserve just added an additional six month commitment for pilots and maintainers who wish to separate or retire.

While being careful to not call this new requirement a "stop-loss", the AF Reserve is adding on six months of involuntary service in addition to whatever service requirements were previously imposed. The military typically adds mandatory service requirements for things like aircraft qualification courses, professional development courses, and permanent change of station moves.

I find it interesting that the AF Reserve has to implement controls like this as membership as a traditional reservist typically requires as little as a few days per month up to about a week and a half per month for combat ready flight crews. In addition, reservists are protected from discrimination or firing by their civilian employers by a law known as USERRA.

What this telegraphs is that as the commitments, deployments, and tasking of the reserve forces increases, reservists, who already have a civilian career as a pilot or maintainer, are calling it quits.

What military planners seem to fail to realize is that pushing on the combined active/reserve water balloon in one place will result in a bulge in another place. That is to say that there is no free lunch. Higher tasking and deployments for the guard and reserves, most of whose members came from the active forces, will force an exodus from those organizations as well.

The military should either accept higher personnel loss rates in a good economy and spend the money and resources on training replacements, or, here is a novel idea: just start to say no to increased tasking, though that would require a higher degree of testicular fortitude than is normally displayed in the flag ranks.

Monday, April 02, 2018

The Dominoes Fall: Goodbye Great Lakes Airlines



By Quintin Soloviev - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=58727240
Photo - Quintin Soloviev 



Great Lakes Airlines, a regional airline serving the upper midwest part of the US has shut down operations as of  last week.

In a statement released, the management of the airline blamed their woes on the 1500 minimum hour for pilots rule imposed by Congress in the wake of the 2009 crash of a Colgan commuter aircraft. Great Lakes management has had trouble finding pilots to fly their Beech 1900 aircraft.

A lively debate currently continues as to the efficacy of the 1500 hr rule which mandates that all pilots have a minimum of 1500 hours of experience before being able to serve as a pilot on a commercial passenger carrying aircraft. It has been noted by opponents of the rule that both pilots on the fated Colgan airliner had the minimum 1500 hours and that the rule would not have prevented that crash. The accident review blamed fatigue and training issues with the captain of that flight.

I am personally agnostic about this rule noting that the USAF and other military services can produce competent pilots with about 200 hours of experience. On the other hand, their training is estimated to cost about $1 million per pilot.

Also, there is an ongoing worldwide pilot shortage occurring in many countries without such an onerous hours requirement. The pilot shortage is a multi-faceted problem which will not likely be solved with the repeal of the 1500 hour rule.



Thursday, March 22, 2018

Boeing 737 MAX 8 Pilot Report







The Boeing 737 first flew in 1967 and since then has become the world's best selling airliner with Boeing just recently delivering the 10,000th 737 to Southwest Airlines. Major updates and enhancements over the decades mean that the newest generation of 737s, the MAX series, while bearing a family resemblance to the earliest models, is packed with the latest technology in avionics and propulsion.

I recently had the opportunity to fly a 737 MAX 8 for the first time. We had been scheduled to fly a 737-800 for the sequence, so when a MAX 8 showed up I was quite pleasantly surprised. My next concern was whether I'd remember anything about the new features of the airplane. Our differences training had been accomplished months earlier through an online course. As it turned out, there was little to be concerned about as the cockpit displays, while larger, incorporate all of the familiar elements from the NexGen series with a few welcome additions. (The NexGen 737s consist of the 600-900 series first introduced in the late 90s) I felt at home in the MAX cockpit right away.

Pilot's primary NAV display with terrain mode selected


The MAX 8 in our configuration has a 175 seat single class capacity with a standard crew complement of four flight attendants and two pilots. The layout and galleys are very similar to our -800s. There are two lavs aft and one forward. The MAX comes equipped with Boeing's new Sky Interior which features programmable LED lighting and mood music for boarding and deplaning. The seats themselves have adjustable headrests and a generous 32" seat pitch and 17.6" width, the widest of any 737 variant.

Boeing Sky Interior with programmable LED lighting


Moving back up front, the most dramatic feature of the MAX is the cockpit displays. The six 7 inch square display units in the NexGen (NG) aircraft have been replaced by four 15 inch wide display units. Separate mechanical features of the NG such as the flap indicators and clock are now displayed on these larger units. The gear handle and standby flight instruments have been relocated between the center displays and are now equidistant from both pilots.

Preflight, Engine Start, and Taxi Out


We were scheduled to operate as WN 5599 from DCA (Washington Reagan) to MCO (Orlando). The enroute burn was planned at 1+59 and 9000 lbs at an altitude of FL400 or 40,000 ft. The aircraft was carrying two deferred maintenance items, the onboard network system, and the first officer's ILS system resulting in a downgrade to CAT I ILS status. As the weather was VMC at both our departure and destination, this was not a concern.




Our takeoff weight was planned at 144,400 lbs, well below our max allowable of 159,800 lbs departing from runway 1 in DCA. Our maximum takeoff weight was determined by the maximum allowable structural landing weight of 150,800 lbs plus our planned burn of 9000 lbs. The planned fuel was 14,900 lbs which included 2000 lbs of contingency fuel in addition to the standard 45 minutes of  FAR reserve or 3200 lbs. I was immediately impressed in how little fuel it was going to take us to get to Florida.

The LEAP-1B engines deployed on the MAX are 15% more fuel efficient than the CFM56 series engines on the NG aircraft. These efficiencies are the result of an increase in the bypass ratio from five on the CFM56 to nine on the LEAP-1B and an internal pressure ratio increase from 11:1 to 22:1. A significant weight reduction in the rotor of the LEAP-1B adds to the fuel efficiency of the engine but also adds some restrictions on start and shutdown which I'll address later.


Fan blades of the LEAP-1B


Our preflight checks and flows were nearly identical to our NG aircraft. Our clearance from DCA was on the Boock2 RNAV departure. Departing to the north from DC always requires extra vigilance due to the proximity of the prohibited areas around the White House and the Naval Observatory where the vice president's residence is located. The authorities have an extreme lack of understanding and humor should an airliner even brush into one of these areas. The departure requires an immediate left turn after liftoff to track the Potomac. As the wind was gusting out of the northwest, I elected to engage LNAV lateral navigation on the ground to have lateral guidance immediately after takeoff.

Once we were loaded and had clearance from ground control, we started the pushback and start sequence. The restrictions on starting which I noted above now came into play. The rotor, or the spinning center shaft of the engine, had so much weight shaved off that it could have a tendency to bow when hot after shutdown. This bowing could cause the compressor blades to rub against the engine housing resulting in excess wear and possible compressor stalls on start due to air leaking around the gaps.

A view from the wheel well


To mitigate against this thermal bow effect, the computer will motor the engine before introducing fuel during the start sequence. The amount of anti-bow motoring is determined by the computer but can be up to several minutes before the fuel lever can be raised to start each engine. Once started, there is an additional three minute warm up period before takeoff thrust can be applied. This restriction is five minutes when the engine is started cold. There is also a firm three minute cool down period required before shut down as well. These restrictions will most likely not pose a problem except perhaps when you've pushed back onto a taxiway where other aircraft have to wait for you.

The quietness of the aircraft became immediately apparent as soon as the engines were started. It is truly a quiet airplane. I fly with a Bose noise cancelling headset and didn't notice until we were nearly level at 40,000 ft that I hadn't turned on the noise cancelling feature. It was that quiet. The LEAP-1B engine employs the same scalloped or saw tooth pattern on the trailing edge of the cowling that is evident on the 787. This design smooths the mixing of the core and fan airflows, significantly reducing turbulent flow and noise.


Scalloped cowling decreases engine noise (and looks cool)


The aircraft steering had a nice tight feel to it, but any new aircraft should. I won't miss the wobbly shopping-cart nosewheel steering of our old -300s, which were retired last year. We were cleared for takeoff with little delay and were on our way.

Takeoff and Climbout


The takeoff roll was unremarkable save for the quietness of the engines. We had calculated a reduced thrust takeoff power setting, but the aircraft accelerated and lifted off smartly. The LNAV course became active almost immediately and we started our left turnout on the departure. I hand flew the aircraft up to about 18,000 ft before engaging the autopilot. I thought the aircraft responded to manual controls similarly to our 800 series aircraft.


Pilot's inboard display with vertical situation and enhanced engine instrument display



The Boock2 departure tracks north and then makes a right turn for a nice view of the city...from the right seat! We quickly arrived at our cruise altitude of 40,000 ft, turned off the seat belt sign, and had some time to look at the new features on the displays. Other than being nearly twice as large as the NG displays, some new features such as a vertical situation display are included. When activated, this feature displays a side view of the aircraft's altitude and planned vertical navigation. It should come in handy for keeping situational awareness during complicated arrivals or when given a "descend via" clearance.

Descent and Approach


Our flight plan had us flying the Cwrld4 arrival from over Ormond Beach. This arrival set us up nicely for a VFR downwind arrival to Orlando's Rwy 35R. The arrival went smoothly with the autopilot easily staying on path in VNAV. Our arrival weight was very close to the planned 135,400 lbs and we had planned for a flaps 30 visual approach. We were just about abeam the field at perhaps 3000 ft when we got the clearance for a visual approach, my favorite kind of clearance.

Depending on controller preferences and traffic load, some controllers will call your every turn around the pattern. This type of hand holding can be annoying, especially if there is no other traffic in the pattern. Other controllers will just let you go to turn your own base and final. This was one of the other guys and he cut us loose. The key is to not screw it up and fly a bomber (wide) pattern or to cut in so tight that you end up going around.  I disengaged the autopilot and autothrottles, and proceeded to fly the pattern by hand to get a feel for how the MAX flew in the slow speed regime.


The engine instruments display can be selected for either side 



Flying a visual approach cross cockpit can have its own challenges as you can't readily see the runway, which is the primary reference in any visual pattern. Inside cockpit references can be used such as the FMC glidepath, wind arrow, runway DME (distance), and of course the best resource, the guy or gal sitting on that side of the airplane.

I'd been descending on downwind with flaps at position 1 for extra drag. While I'll use the speedbrakes if I need them, my preference is to avoid using them if possible. Pulling the nose up, dropping the gear and extending flaps on schedule is my preferred technique for getting configured quickly. The MAX went through her paces brilliantly and we were lined up on glidepath about three miles out when I brought the power up. While I had to take a second look or two to see the electronic flap gauge and newly positioned gear indicator lights, I quickly adjusted to their new locations.

Landing and Taxi In


The landing was uneventful and rather smooth if I do say so myself. The aircraft decelerated smoothly with the reversers and auto-brakes while the quietness of the engines again made itself apparent. We exited on the high speed and taxied to our gate. We had to start the timer after leaving the runway to ensure that we complied with the mandatory three minute cool down period before shutting down the engines. It wasn't a factor in this case as the taxi time was longer than three minutes.

The LEAP-1B engines are eight inches in diameter larger than the CFM engines on the NG, so in order to maintain the same ground clearance, the nose gear was lengthened about eight inches. This gives a slightly different picture while taxiing, but I found the landing picture to be very similar to the -800. The longer nose strut becomes apparent after lowering the nose to the runway but it was not disconcerting.

APU fairing


After shut down, we had a 45 or so minute turn at the gate before our next leg which was to Philadelphia. I took this time to walk outside and take a few photos of the jet. The most obvious difference in the MAX is the larger engines and slightly different looking winglets than those installed on our -800s. Also different is the APU fairing which resembles that of the 767 or 787 more so than earlier model 737s. Other than that, there are not a lot of obvious tells to set a MAX apart from its NG sistren.

The Mighty MAX Strikes Out


Our flight to Philly was completely full at 175 passengers plus crew. Once loaded and ready to go, we pushed back and went through the lengthened start up process. It was on taxi out to the runway that the MAX let us down. Shortly after leaving the ramp and joining the parallel taxiway to Rwy 35L, the Master Caution and the L Elev Pitot heat light came on. This meant that a fault had occurred in the heating element for the elevator pitot tube which provides airspeed inputs to the elevator feel system.

As Orlando is a maintenance base for us, I made the decision to return to the gate and have our mechanics look at the problem. As it turns out, this malfunction can be deferred through the use of the minimum equipment list (MEL). There are two of these systems installed and only one is required for flight with some restrictions. It was this restriction that sank us.

The mechanics noted that this tail number had a history of this particular malfunction, but they had the deferral paperwork done very quickly and we were ready to go...or so I thought. The next thing we heard over the gate agent's radio was that the airplane was being taken out of service. I quickly called dispatch and our dispatcher didn't even know what was happening. A phone call to the supervisor of dispatch revealed that while the flight to Philly was fine, it was the subsequent flight to Chicago that was the problem.

The restriction for this maintenance deferral was that the aircraft couldn't be operated in forecast or actual icing conditions. And it turns out that the forecast for Chicago was a broken cloud layer with temperatures below freezing. The supervisor of dispatch didn't want the airplane stuck in Philly, so we lost our beautiful MAX. Luckily for us (and 175 passengers), another airplane was available. Tail swapping a full airplane took about an hour, but we were glad to be going again, only this time in an 800 series.

The author in the corner office


In Conclusion


The 737 MAX is loaded with new technology which makes it a pleasure to fly and saves a bunch of money in fuel costs which should make airline managements happy. But even with all the new technology, the airplane is still a 737 at heart and was quite easy to fly. The LEAP-1B engines are whisper quiet and the large displays present data in an elegant and easy to understand format. Of course, as we discovered, there will always be some bugs that need to be squashed in a new system, but I am quite confident that the MAX has a long and productive future in front of her.